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This paper presents a nonoscillatory option (i.e., free of dispersive ripples) of the advection 
algorithm described previously in J. Conzput. Ph~s. (54 (1984), 325; 67 (1986), 396). The 
approach adopted merges the flux-corrected transport methodology with the iterative 
formalism of the algorithm. Further discussion of the algorithm’s accuracy is included. 
Theoretical considerations are illustrated through numerica! tests and examples of 
applications to atmospheric tiuid dynamics problems. T, 1990 4cadsmic ?RSS IX. 

1. INTR~OUCTION 

Smolarkiewicz [I, 21 and Smolarkiewicz and Clark [3] described a class of 
nonlinear. fully multidimensionai, sign-preserving advective transport algorithms of 
varying accuracy and levels of complexity. The generai concept of the algorithm 1s 
that of the dissipative advection schemes; however, compensation of the leading 
truncation error terms of the donor-cell scheme is nonlinear. It is achieved through 
the iterative application of the donor-cell scheme where the second and fohowing 
iterations use pseudo velocity fields, obtained from renormalization of the rr-aca- 
lion errors of the donor-cell scheme into the form of donor-cell fluxes, The resulting 
conservative algorithm is second-order accurate for an arbitrary velocity fieid while 
it possesses such useful properties of the donor-cell scheme as strict conservation of 
the sign of -&he transported field and a relatively small phase-error. The analytic 
method of the derivation of the algorithm [2] allows for a relatively simple 
generalization of the scheme on nonstandard forms of the continuity equation w-i& 
eventual inclusion of the diffusive terms 131. 

In both [2, 3] it was emphasized that although the algorithm is strictiy sign 
preserving it may, in general, suffer from dispersive ripples, similar to all high;: 
order linear advection schemes. The sign-preserving property is associated with the 
nonoscillatory behavior of the algorithm near “zeros” of the transported field 
(Section 4 in [3] ). When the transported field contains a significant constant or 
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background component then the dispersive ripples appear in the solutions. The 
amplitude of the oscillations is considerably reduced compared to the linear 
schemes. In a number of applications, monotonicity preservation becomes a 
necessary property of the advection scheme. In responding to such practical needs, 
we present an option of the multidimensional positive definite advection transport 
algorithm (hereinafter, MPDATA) which strictly preserves the local monotone 
character of the transported field. The approach adopted merges the flux-corrected 
transport (FCT) methodology of Boris and Book [4-S] and Zalesak [7] with the 
iterative formalism of MPDATA. Due to the original design of MPDATA it leads 
to the simple modification of the original version of the algorithm. Because of 
MPDATA’s specific phase-error properties [3], the nonoscillatory option appears 
to be an accurate and competitive tool for applications. A practical advantage of 
the approach is separability of the sign and the monotonicity preservation. Because 
the sign preservation is about half as expensive as the monotonicity preservation, 
incorporating the nonoscillatory modification as an extra option of MPDATA in 
the dynamic model has economic advantages, especially in atmospheric flows where 
a class of problems requiring strict preservation of monotonicity is relatively 
narrow compared to the class of problems that require strict preservation of sign. 

The paper is organized as follows. Section 2 contains a summary of MPDATA. 
Section 3 contains a summary of the general, arbitrary-dimensional FCT procedure 
together with the consequently following nonoscillatory version of MPDATA. 
Section 4 presents elementary tests and discussion on the accuracy of the scheme. 
The examples of application of the nonoscillatory option of MPDATA to 
atmospheric fluid dynamics problems are presented in Section 5. 

2. SUMMARY OF BASIC MPDATA 

The basic equation to be solved is the continuity equation describing transport 
of a nondiffusive scalar quantity in i21-dimensional space 

(1) 

where $ = $( t, x1 , . . . . Y”) is the nondiffusive scalar quantity, assumed to be of con- 
stant sign; 24’= u’( t, x1 , . . . . x”) is the Ith velocity component, I= 1, . . . . M; and 
t, x = (x’, . ..) x”) are the time- and space-independent variables. For compactness of 
the numerical equations we shall use the same notation as in [2, 31. 

+I’ is a numerical approximation of the solution of Eq. (I), defined in points 
(tn,xi), where t”=n.At, xi=(i’ AX’, i2AX’ ,..., i”AXM), n=O ,...) NT; i’= 
0 9 ..., NX’, and AX’ is the constant spatial increment in the Zth direction. The 
indices described by capital letters always indicate vector components whereas the 
indices described by lowercase letters indicate grid positions. 

e,= (0, 0, . . . . 0, 1, 0, . . . . 0) is a unity vector in the Zth direction; 
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I!z4 ! L c r 2e, is the Pth velocity component in the ~1 th time step defined on a staggered 
grid (the Ith component is staggered $AX’ in the ith direction). 

The basic MPDATA may be compactly written as 

where F’ is the donor-cell advective flux in the Ith direction evaluated in the s&me 
staggered points as the Ith velocity component and defined as 

[. f + = max(0, . ) and [.] - = min(O. .) are the positive- and the negative-part 
operators, respectively. k = 1, . . . . IORD numbers the corrective iterations ii/j*’ such 
that 

and also, defined for each consecutive iteration, pseudo velocities such that 

The pseudo velocities appearing in the symbolic relationship in (5a) are derived 
analytically based on the truncation error analysis of the donor-cell scheme 
(Section 2 in [2]). Their explicit, finite-difference representations were discussed in 
derail in [2. 31. When ZORD = 1 the algorithm results in the common donor-cc!! 
scheme. For details on the derivation of the algorithm as weI1 as a discussion of 
consistency, stability, and accuracy, interested readers are referred to [2] In. [2] 
it has been shown for M6 3, that the stability of the first iteration (the donor ceil 
scheme) implies stability of the consecutive iterations. An extension of the scheme 
to the anelastic transport equation, which requires taking spatially variable densky 
into account in ( 1 ), (2 j7 and explicit representations of (5a j, has been discussed in 
de’:ail in [3, Section 3.31. 

The scheme was originally designed for the transport of the constant-sign scalar 
variables in the anelastic, fluid dynamic model with inclusion of the moist convec- 
tion processes [3]. Extension of the scheme to fields of variable sign may be 
achieved in several different ways, however, adding an appropriate constact to the 
transported field appears to be an optimal choice. This option has been discussed 
in detail (Section 4 in [3]), since it exposes an important property of the scheme. 
In contrast to (I ) and the linear finite difference approximations to it, MPDATA 
iyr nul invariant with respect to the addition of a constant. but 

ATA[I,LI +const] = MPDATA[$] + O(dX’r dr’!, ( 6 ) 
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where MPDATA in (6) has a symbolic meaning of approximation to (1). In [3] 
it was shown that adding a large constant to the transported field increases overall 
accuracy of the solution, but at the cost of losing the nonoscillatory character of the 
solution near the background value. A possible cure of this deficiency of MPDATA 
incorporates the ideas of FCT algorithms [47]. 

3. THE NONOSCILLATORY OPTION OF THE SCHEME 

3.1. General FCT Procedure 

The generic reason for the appearance of the oscillations in the numerically 
generated higher order accurate solutions to Eq. (1) is that the magnitude of certain 
fluxes is overestimated with respect to their analytic value. In contrast, the 
magnitude of the fluxes given by the first-order accurate schemes is underestimated, 
which results in monotone but heavily damped solutions [7]. The FCT procedure 
overcomes the problem of false oscillations by imposing appropriate limits on the 
transport fluxes from the higher order accurate algorithms. In the following we 
summarize the essential aspects of the general FCT scheme, in order to facilitate 
derivation of the nonoscillatory option of MPDATA. 

Consider some higher order advection algorithm for integration of Eq. (l), 
M 

* 1” = $I’- 1 (FH:, I.:2e,- FH:- l/2e,). (7) 
I= 1 

Since in (7) the time level of the fluxes may be taken at any position, this equation 
represents the general form of an arbitrary finite-difference flux-form scheme. The 
high-order FH-flux may be arbitrarily cast into a sum of the flux from a certain 
low-order nonoscillatory scheme and the residual, i.e., 

where (8) defines the residual A-flux, which has a sense of correcting at least the 
first-order truncation error terms in the transport fluxes of the low-order scheme, 
i.e., 

4, 1,‘2e, - At. c”(AX, At) + HOT, (9) 

where HOT has a usual meaning of the “higher order terms.” Because of this com- 
pensation of the leading truncation-error term in a low-order scheme the A-flux is 
traditionally referred to as the “antidiffusive” flux. Using (8) in (7) results in 

*;+L y;+l- ,+f I;, (4, 1.2er - A fp l,‘&J (10) 

where “Y denotes the solution given by the low-order scheme, which by assump- 
tion satisfies 

*yx~ cy;+++yy (11) 
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where lpx and @YIN are yet unspecified maximal and minimal values of the 
scalar within the ith grid box that achieve the monotonicity of the scheme. Their 
explicit form will be discussed later in this section. Inasmuch as Y’y’ ’ preserves the 
monotone character of the transported field, (1 1 ), the eventual oscillatory behavior 
in $:+I comes from overestimating the magnitude of certain A-fluxes. Thus, :o 
ensure ripple-free solutions it is sufficient to appropriately hmii A-fluxes such that 

where C-coefficients, that in generai are functions of the low- and high-order 
solutions on the grid. are determined from the set of constraints 

and 

When Cf, 1 2el is equal to zero or unity the resulting transport flux in (14) becomes 

fG+ ,cZe, or FfC+ l,,Ze,, respectively. The assumed convergence of the tow~rder 
schemes involved in (8) together with (9), (12), and (13) ensure the convergence of 
the $-solutions in (14) as AX, At + 0. 

The constraints in (13) and (14) allow one to derive formally (see Appendix) the 
expiicit form of the C-coefficients, and consequently, the exphcit form of the limited 
antidiffusive fluxes in (12). The derivation provides maximized .;i-fluxes ic (I 2) 
satisfying constraints (13) and (14): 

where 

and .4:“, AOUT are the absolute values of the totai incoming and outgoing A-fluxes, 
(8). from the ith grid box, respectively. E is a smah value: e.g., -- lo- ‘j, w 
been introduced herein, to allow for efkient coding of $-ratios when Af” or -4-c”:” 
vanish. Equations (14), (15), (g), (16a), and ( 16b) constitute a general, arbitrary 
dimensional form of the FCT algorithm discussed by Zalesak 1]7] (the form&as 
(14), (14’) in 171 are not required to preserve monotonicity and, in our experience. 
they are responsible for certain pathological behaviors of the FCT schemes, 
cf., [S]). The arbitrary dimensionality of the procedure jn [7] contrasts with the 
alternate-direction approach utilized by most other monotone schemes. 
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In order to determine /I! and p! uniquely one must specify the limiter 
l+p”, IpIN m (16a), (16b). The simple, standard limiter [7] is 

*yx = m,ax(i&-.,, $i’, I&‘+.,, Yyt$ Yf+‘, Yf?b,) (17a) 

$~““=m,in(ij~-~,, $r, $I’+,,, Y;l?J,, Yr+l, Yy?:,). (17b) 

The low-order, nonoscillatory Y-solutions appearing in (17a), (17b) constitute the 
original Boris and Book [4] limiter. This limiter effectively prevents development 
of spurious oscillations in an arbitrary flow field. Zalesak [7] extended the original 
limiter onto the local extrema of the solution at the previous time step. The goal 
of this extension is to improve the predictions in incompressible flows where the 
only extrema allowed in an arbitrary grid point are those that were present in its 
immediate environment (determined by the CFL stability criteria) at the previous 
time step. 

3.2. FCT Option of MPDATA 

The formulation of the nonoscillatory option of MPDATA is a straightforward 
consequence of the discussion presented in the previous section. Note that the 
transport fluxes for k 2 2 in (2) have the sense of .4-fluxes in (10). Because all of the 
transport fluxes in MPDATA always have the form of the donor-cell fluxes (3) and 
MPDATA is strictly sign preserving, Eq. (15) reduces to the formula for the 
monotonicity-preserving pseudo velocity 

[‘i?+ lP2J MoN = mint& P!, B/+,,)C($+ ,..2e,lf +min(l, B!, Pf+e,)[‘$+ 1.2e,]-, (18) 

where k = 2, 3, . . . . IORD and the transport of nonnegative scalars has been assumed. 
In the case of the advection of nonpositive scalars t replaces 1 and vice versa. The 
p/ and /I/ ratios take an explicit form 
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which completes the nonoscillatory option of MPDATA. As in the original version, 
the FCT option allows for an arbitrary number of corrective iterations. where :he 
“high-order” solution in (14) becomes the “low-order” soiution in the next iteratron. 
-We have verified in a series of elementary tests that the effect of the consecntive 
iterations is similar to that in the basic version of MPDATA, i.e.? each i:era:io- 
increases the accuracy of calculations but the rate of improvement decreases quickiy 
with iterations, leaving IORD = 4 a practical maximum (cf., Section 4 in [2] anti 
Section 4 in [3] )~ Since the developments reported in [2] and [3] modified either 
the physical or the pseudo velocity field, they are also applicable with (18)-(X\. 

4. ELEMENTARY TESTS AND ACCLJRAC~ COMBER.AT!ON~ 

Hn [3] we demonstrated that MPDATA is a rehable, accurate, and convenient 
tool for geophysical fluid dynamics applications. Consequently, in the current paper 
the scheme in Eqs. (2)-(5) will be considered a reference state for the nonoscilla:oq 
option described in the previous section. The nonoscillatory option, by design, 
prevents development of the dispersive ripples. Thus, our major concern is not how 
well the scheme preserves the monotone character of the transported field but 
rather how it affects the accuracy of the solutions obtained with the original vcrs~oz 
of the algorithm. The intension of this section L ‘Q to document accuracy charac- 
teristics of the nonoscillatory MPDATA and to indicate certain specifk advantages 
of the scheme that are important for practical applications. 

A number of important aspects on the accuracy of advection algorithms m.ay be 
assessed through analysis of the surfaces of the truncation error d’(3tp. dx”‘: a; 
LX, d; + 0 in a one-dimensional constant coefficient case. Yn contrast to linear 
advection schemes. formal evaluation of the truncation error for the noniinear algo- 
rithms can be cumbersome. Instead, one may consider a simpie empirical S~ST, 
which is an extension of the convergence test employed in [2, 31. For the purg~e 
of the test we assume uniform advection of the one-dimensional Gaussian distribu- 
tion $(.k-. t,) = (I/a 6;27[) exp( -(x - .~,)~/2a’). After an arbitrary chosen fkeci 
timej T=NT.dt(r, 3X) (BIG 1 is the Courant number and AT Is the vsriabie 
number of the time steps) the average error per spatial increment and per unit of 
time between the numerical and analytical solutions is evaluated as 

where $(r, I.~), Ijirr are the anaiytical and numerical solutions, respectively. at the 
point (T, x;). TRER, when multiplied by T, has the sense of a cumulative in T and 
average per grid increment truncation error of an employed scheme. Dividing L!X 
successively by 2 and evaluating TRER for 0.05 <r GO.95 with the Couract 
number increment dx = 0.05 results in surfaces defined by (21). 

Figure I displays isoiines of log, TRER for the IORD = 2 version of MPDATA 
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YE 

0. I. 2. 3. 4. 5. 6. ?. i 

r; 4x0 

FIG. 1. Isolines of log,( I‘RER) for the IORD = 2 version of MPDATA, in the polar system of 
coordinates. The radius has the sense of the grid increment where numbers on axes indicate powers 
of 2 in the coefficient multiplying the finest resolution; the polar angle represents the Courant number 
varying from 0 to 1 for angles between 0 and 7~12, respectively. The numerical values of the field are 
displayed for every second point in the angular (Courant number) direction. 

in the polar system of coordinates, where the radius r = log,(dX/dX,) + 8 (AX, is 
the largest grid increment employed in the test) and the polar angle 4 = a(7c/2). For 
r = 8 the dispersion of the initial distribution, U, is covered by 1.5 grid intervals and 
for r= 1 it is covered by 192 grid increments. The time of integration, T, has been 
chosen such that the solution advects over the one grid increment for r = 8 and 128 
increments for I’= 1. The numbers displayed along the arcs of constant radius are 
the values of log, TRER. Comparing these values along the rays of constant 
Courant number (constant 4) shows that log, TRER decreases in -2 increments 
with doubling the resolution as dX, A? + 0. This demonstrates the second-order 
convergence rate of the ZORD = 2 version of MPDATA in accord with our previous 
analysis in [2, 31. Figure 2 shows log,( TRER) for the ZORD = 3 version of 
MPDATA. The second corrective iteration in the scheme shifts the entire surface 
down increasing the overall accuracy and it deforms the surface along the a = 0.5 
line, resulting in the depression of the third-order convergence rate. Additional 
corrective iterations increase accuracy only slightly. Figure 3 shows the error- 
surface for the IORD =2 nonoscillatory version of MPDATA. A comparison of 
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FIG. 2. Isolines of log,( TRER) for the IORL? = 3 rersion of MPDATA 
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FIG. 3. isolines of log,( TRER) for the iOl?D = 2 nonoscillatory version of MPDATA. 
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Figs. 3 and 1 shows that at low resolutions, FCT modification has little effect on 
the accuracy of the algorithm. However, as dX, At -+ 0 there is a slight degradation 
in the convergence rate from 2 to - 1.8. Similar results were obtained for the 
IORD = 3 version of MPDATA. 

The accuracy characteristics of an arbitrary FCT algorithm depend on the choice 
of the low- and high-order schemes employed in the procedure (Section 3). Figure 4 
shows the result of the convergence test for the common donor-cell/leapfrog FCT 
scheme [7]. A comparison of Figs. 3 and 4 indicates, that in general the non- 
oscillatory MPDATA converges faster and is more accurate than the donor-cell/ 
leapfrog FCT scheme. For small Courant numbers the latter scheme has a - 1.7 
convergence rate, slightly slower than the nonoscillatory MPDATA. For large 
Courant numbers, however, its convergence rate degrades considerably decreasing 
to values smaller than unity. The reason for this slow convergence rate is the incon- 
sistent anisotropy of the truncation error distribution of the two schemes mixed by 
the FCT procedure. A comparison of the error surfaces of the donor-cell and the 
second-order leapfrog schemes showed that the donor-cell scheme, despite its first- 
order convergence rate, is actually more accurate than the second-order leapfrog 
scheme for large Courant numbers at the resolutions considered. The latter is 
related to the faster diminishing phase-error in the donor-cell than in the leapfrog 

FIG. 4. Isolines of logz( TRER) for the donor-cell!leapfrog FCT scheme. 
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scheme as a --, 1 (cf., Table III in [4]). The nonoscillatory option of MPDATX is 
free of the above-mentioned problem because the subsequent corrective iterations 
affect only the amplitude errors and retain the phase-error of the donor-ce!i scheme 
(Section 4 in [ 3 ] j. 

The nonoscillatory MPDATA has been compared with other? elementary FCT 
schemes. As revealed by the convergence tests, the nonoscillatory MPDATA is 
more accurate than the FCT scheme based on the dissipative second-order Crc;.~iey 
algorithm. and for a > -0.5 it is also more accurate than the FCT vers:on ei 
fourth-order accurate in the space leapfrog scheme and the FGT version c.’ the 
second-order Crowley scheme with the fourth-order anproximation to the rransport 
guxes [9]. The FCT scheme based on the “constant-grid flux” fourth-order dis- 
sipative algorithm of Tremback et ai. [IO] has at least twice the accuracy o; ti-re 
nonoscillatory MPDATA. No analyzed FCT algorithms exceed secon.d-order c;?n- 
vergence rate as a result of the centered approximation of the flux derivanves ir : : i. 
The deviations towards convergence rates of less than 2.0 are attr;buted ‘10 rhe T‘xr 
that. in order :o ensure monotonicity of the final algorrthm the first-order xx: 
terms in the iow-order scheme employed in the FCT procedures SXXJO~ be :orali; 
compensated at every grid point [I 11. 

A more pragmatic illustration of the considerations above is provided by he 
one-dimensional uniform advection test of the irregular signal 

where 

with x = 0.5 and 3X= 1. The choice of the signal and the spatial resolution $xes 
the results of the test in the r> -5 portion of rhe log,jTRER) surfaces discussed 
earlier. Figure 5a shows the results of the test after 80 time-steps for the i0RB = 3 
version of MPDATA (dashed line) and the nonoscillatory- version of this scheme 
(thin solid line). The heavy solid line represents the analytic solution. Comparison 
of the three curves shows that the primary effect of the FCT modification is 70 
remove the overshoot and the undershoot present in the original solution. 
Figure 5b shows the results of the same test but for the traditional FCT algorithm 
based on the donor-cell and the leapfrog scheme. Although the FCT procedure 
eff?ciently rexmoves the dispersive ripples, the amplitudes of the initial perrurbatioos 
are severely damped at the cost of the improving phase-error. Similar resuhs were 
obtained for the FCT version of the second-order Crowley schemes. Neither of the 
schemes considered is capable of resolving the fine details of the initial condition. 
The superiority of the MPDATA is questionable when compared with the foourth- 
order accurate dissipative scheme [lo] and its FCT version, Fig. 5~. 
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FIG. 5. Uniform advection of the irregular signal (heavy solid lines) with oscillatory schemes 
(dashed lines) and their nonoscillatory versions (thin solid lines): (a) the IORD = 3 MPDATA; (b) the 
second-order accurate leapfrog scheme; (c) fourth-order accurate dissipative scheme in [IO]. 
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The examples presented illustrate the advantages of the nonoscillatory MPDATA 
over the more traditional FCT algorithms based on the second-order accurate leap- 
frog-type or the dissipative advection schemes. The primary reason for the berber 
performance of the MPDATA is the consistent phase-error in the low- and the 
high-order schemes mixed by the FCT procedure. An apparent advantage of the 
MPDATA over the leapfrog-type algorithms is the common (for the dissipative 
schemes) requirement of the one-time level storage of the transported held. The 
higher order accurate dissipative advection scheme [IO] employed in the FCT 
procedure, although attractive according to the one-dimensional analysis, does nc’i 
have its multidimensional counterpart, which limits its applications to the aiternate- 
direction (time-splitting j approach. This immediately hmits the practicahty. 
especially from our viewpoint, since in the class of geophysical fluid dynamics 
applications addressed (cf., [3] and Section 5 of this paperj, time-splitting is not 
allowed. Another weak point of these algorithms is that their fast convergence, anti 
the resulting excellent accuracy, is limited to uniform-grid calculations and the 
particular form of the continuity equation in (1 j. 

For the sake of completeness we show in Fig. 6 the results of the rotating cone 
test from [2. 31. This test has been used in [3] to document the nonoscillatory 
behavior of the MPDATA near “zeros” of the transported field and the lack of 
invariance of the scheme with respect to the addition of a constant (see Sectiori Z 
of this paper), All soiutions in Figs. 6a-d are shown after six revolutions of the cone 
(3768 time steps) whose initial height is equal to the size of the reference spike in 



the upper right corner of ever!: piate. Figures 6a---b are after Figs. 8 and 9 in [2j 
and Fig. 6c is after Fig. 2 in [3] and they represent, respectveIy, solutions for 
/OR0 = 2 and IORU = 3 hfPDAT.4 with a zero background vafue and fORD = 2 
MPDATA with a large constant background. ‘4s discussed in C.37, the addition of 
the iargc constmr inqxoves &e overall accuracy of tbc scheme brtt at the cost of 
dispersive ripples, Fig. 6c. The solutiw shown in Fig. 6d is eyuivaIcnt to that in 
Fig. 6c, except that it has been obtained with the iORD=Z? nanos&~tory versian 
of the MPDATA. It is apparent in the figtrrc that the ripples disappeared with~t 

noticeable degrading of the o\;eralf accuracy of the soiution. The lstter is consistent 

FJr;. 6, The rofating cone test from C;‘. 3). Aff solutions 8x &oWn after 3768 time steps isis revolu- 
rivns of the conz}. The rekrrnce spikes in the upper-right and the lower-left C~XIWS represent the initial- 
ancf minus half of the initial-height of rhcr cone: (a } IORD = 2 MPDATA wilh zero background value; 
1.h) fURI)-= with zero bwkground value; (c) IURD -2 with large wnstant .background value: 
(d) IOHD=2 nanoseillatory option of MPD.4T.4 with thz same as in (c) large constant background. 
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with the results of the convergence test and the irregular-signal advection test dis- 
cussed earlier in this section. It is worth noting that the solution, equivalen: to ;hat 
shown in Fig. 6. obtained with the donor-cell scheme (1ORD = I j almost vanishes 
Ll, Fig. 2], whereas the results obtained for the FCT version of the second-order 
multidimensional Crowley scheme [S, Fig. 137 are considerably ‘,ess accurate :han 
these in Fig. 6. 

The elementary excercises presented in this section represent only a modest par’. 
of a number of different tests performed. In order to verify the performance of t?e 
nonoscillatory option of the MPDATA we have repeated most of the tests reported 
in [2. 31. In all cases considered the essential outcome was the same as 
demonstrated herein, i.e., FCT modification to the pseudo velocities ia 118) 
efficiently removed spurious local extrema from the solutions without significamly 
affecting other properties of the scheme widely documented in previous pnbii- 
cations. In all tests performed we have encountered neither the “clipping” nor the 
“-staircases”-pathological behaviors of the FCT schemes often reported in ibe 
literature. In the following section we shall demonstrate the satisfactory perfor- 
mance of the scheme in fluid dynamics applications. 

5. EXAMPLES OF APPLICATIONS 

The incorporation of original MPDATA into the anelastic, terrain-follcwmg 
coordinate, dynamic model of Clark [ 12-143 has been reporred in [3]. The modei 
employs the second-order accurate, kinetic energy semi-conserving method of Liliy 
[l5] and Arakawa [ 161 for integration of the transport equation, of momentcm. 
and the second-order accurate MPDATA for all other scalar variables. Because it 
is the positive definiteness rather than the monotonicity preservatior: of ehe trans- 
ported scalar fields which is essential for most applications of the model, th: 
nonoscillatory modification in ( 18) has been incorporated into rhe model as a 
speaal-purpose option. The time consumption associated with usage of :he non- 
oscillatory option in the model is approximately equivalent to the time 
consumption for the default (oscillatory) calculations with IORD’ = I+ 2(1OSrO - 1) 
iterations. 

Further in this section we discuss examples of applications of the nonoscilla.tory- 
MPDATA to selected problems of atmospheric fluid dynamics. The two-dlmer:- 
sional algorithm has been applied to the high-resolution experiments of a :isicg 
thermal, The three-dimensional algorithm has been applied to the large-eddy 
simulation of the planetary boundary layer. In the current paper we focus our inter- 
ests on numerical aspects of the calculations performed-thus we shall discuss 
physical details of the simulated phenomena only to the extent necessary to 
emphasize certain aspects of the numerics. 

5.1. Tnw-Dimensional Therma! Sindutiot~ 

Herein: we discuss the rising-thermal experiment similar to that reported in 
where the authors provided a brief summary of the physical problem and essential 
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references to adequate numerical and laboratory studies. A dry, slab-symmetric 
thermal with a diameter of 500 m is placed at 260 m distance above the ground in 
the center of the horizontal domain. The thermal has a uniform, initial potential 
temperature excess of 0.5 K relative to the neutral ambient environment. The model 
domain is 1000 m high and 800 m wide with a uniform grid spacing of 10 m. Free- 
slip, rigid lid upper and lower boundaries, and periodic lateral boundaries were 
assumed. The explicit viscosity is zero everywhere. Figure 7a shows the isolines of 
the potential temperature excess at t = 10 min using the IORD = 2 nonoscillatory 
option of MPDATA. The qualitative features of the solution, including sharp 
gradient zones, formation of the nodes, and the off-axis shift of. the buoyancy 
maxima, agree very well with the simulations reported in [17] that utilize the 
piecewise parabolic method (PPM) [is]. The authors attributed the above- 
mentioned features of the solution to the highly inviscid character of calculations 
offered by the PPM. The conventional techniques considered in [17] were 
incapable of reproducing sharp gradients, off-axis maxima, and nodal structure of 
the thermal. Figure 7b shows the solution obtained with the original (oscillatory) 
version of MPDATA. A comparison of the two figures shows that the overall 
thermal structure and the essential features of the solution are reproduced by both 
versions of the scheme. As expected, the oscillatory solution embodies finer scale 
structures which may be related to the spurious vorticity production due to the 
local oscillations in the buoyancy field. In contrast to the nonoscillatory solution, 
the maximum and the minimum of the potential temperature perturbation heavily 
over- and undershoots relative to the initial values. 

5.2. Large-Eddy Simulation of the Planetary Boundary Layer 

In the following example we discuss a simplification of the heated planetary 
boundary layer (hereinafter, PBL) experiment of Deardorff [19]. The model 
domain of 4 x 4 km in the horizontal and 2 km in the vertical is covered with the 
uniform grid resolution 50 m. Free-slip, rigid lid upper and lower boundaries and 
periodic lateral boundaries were assumed. The initial profiles of potential tem- 
perature and the water vapour mixing ratio are O(z) = 283 and qL,(z) = 3.5 for 
z 6 0.8, and O(z) = 7.5(2 - 0.8) + 283 and qJz) = 1 for ; > 0.8, respectively, where 
the units are, respectively, K, g/kg, and km for 0, qu, and z. Zero ambient wind has 
been assumed. The subgrid-scale turbulence is parametrized with the traditional 
first-order closure (cf., [12-14)). The PBL is forced with the sensible heat flux of 
200 Wme2 with the random noise imposed of maximal amplitude + 5 % of the 
constant component. 

Figure 8 shows the resolved Reynolds fluxes of moisture, evaluated after 2 h of 
simulation with the nonoscillatory (heavy solid line) and the default, oscillatory 
(thin solid line) version of MPDATA. The dashed line represents the subgrid-scale 
parametrized fluxes which were in both cases at least two orders of magnitude 
smaller than the resolved Reynolds fluxes. The presence (absence) of the layer of 
negative moisture flux above the top of PBL in the calculations with the default 
(nonoscillatory) MPDATA is apparent in the figure. This negative flux, and the 
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FIG. 7, Plots of the potential temperature perturbation at I = 10 min for a rising-thermal experiment. 

Solid contours represent positive values whereas the dashed contours represen: negative. No zero 

contours are shown although all contour levels are integral increments from the zero fine with the 

interval of 0.5 K: (a) Experiment with IORD = 2 nonoscillatory option of MPDATA: (b) experiment 

with IORD =? default version of MPDATA. The extrema of the fields are (4.999 K. 0.0 K and 

(6.4Oi K, -0.247 K) for (a) and (b), respectively. 
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FIG. 8. Profiles of the resolved Reynolds fluxes of moisture for a heated boundary layer experiment. 
Heavy solid line represents the results for IORD = 2 nonoscillatory option of MPDATA whereas the 
thin solid line represents the results for the default MPDATA, and the dashed line shows the subgrid- 
scale parametrized flux. 

similar structures in the resolved Reynolds fluxes of other thermodynamical 
variables are a traditional complaint about the large-eddy simulations of turbulent 
layers. Their relevance to natural PBL was discussed by Deardorff [19], and more 
recently by Moeng [20], who attributed these features to the spurious effects due 
to truncation errors at sharp inversions. Since such unrealistic structures may affect 
eventual parametrization of PBL (one goal of PBL studies) they are usually filtered. 
Incorporation of the monotone version of MPDATA effectively cures these 
problems. 

6. CONCLUSIONS 

1. The nonoscillatory option of the multidimensional positive definite advection 
transport algorithm (MPDATA) was presented. The monotone version of the 
scheme merges the flux corrected transport (FCT) methodology with the iterative 
formalism of the MPDATA. Due to the original design of the MPDATA the non- 
oscillatory option reduces to a simple motidication of the pseudo velocity field, 
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Eq. (1X). Because of the specific phase-error properties of the MP 
monotone option effectively prevents development of the dispersive ripples without 
significantly affecting other properties of the solutions. This has been illustrated by 
means of elementary tests and examples of applications to atmospheric fluid 
dynamics problems. 

9 -. An empirical analysis was presented which showed that the nonosciikory 
MPDATA appears to be an accurate and competitive tool. for applications. A 
practical advantage of the scheme is a separability of the sign and the monotomcz~ 
preservation. This has important economical consequences for these applications 
which do not necessarily require strict preservation of the monotonicity but do 
require strict preservations of the sign. 

3. The nonoscillatory option, since it oniy appropriately limits the pseko 
velocities in MP ATA, is applicable with all possible developments discusse3 ic 
the previous publications. 

APPENDIX: FCT’s LIMITING COEFFICIENTS 

In order tq determine the limiting C-coefficients in (IS) we r;ote that the grid-box 
divergence of the transport fluxes may be cast into a sum of totat inccming asd 
outgoing fluxes from the grid-box, i.e., 

where 

Using (Al) in (14) results in 

Since in (A3) only the inflowing flux increases the value of $7” and only the out- 
flowing fiux decreases it, then in order to satisfy constraints in (14), it is sufficient 
lo ensure that 
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AfN = c ( CC ,..%,I + - lx, 1,&,1- 1; 
I=1 

M 

The inequalities (A4a), (A4b) imply that 

Wa) 

Wb) 

v max(Cf- 1,~2p,, Cf, 1 .2e,) 6 Pi; I y max(Cf- 112e,, Cf, 1;.2e,) d Bf, (A6aj, (A6b) 

where 

(ATa), (A7b) 

and E is a small value (e.g., lOPi’) introduced for coding efficiency of p-ratios when 
AfN or AOUT vanish. Solving (A6a), (A6b) for C-coefficients results, for every Z, in 

Cf, ,.2el d min(BT, Pi 1; Cl- 1.!2e, d min(82, /3/j (A8a), (A8b) 

but since Cf, l,,Ze, = Cf+.,- ,,,2e, and Cl- ,12e, = C’-,,+ 1;2e,, the coefficients CL+ ,12e, 
and Cl- 1.‘2e, must also satisfy the inequalities 

Cl+ 1,‘2e, G mWI+ e,v Pf, ,,I; Cf- li2e, d min(&-.,, P/L.,I. (A9a), (A9b) 

The inequalities (A8), (A9), and (13) reduce to the simple form 

V Cl+ 1:2,,< min(L P!, Pf, Pt+.rT Pt+e,). 
i. I 

(A101 

The inequality (AlO) is the sufficient condition for monotonicity of the modified 
scheme (14). The ratios /I/ and /?l control overshoots and undershoots, respectively, 
of the solution at Xi grid point. Since A(+l,,Ze, in (12) is exclusively, either positive 
or negative (vanishing AI+ +, is a trivial case), it exclusively contributes either to 
the undershoot at xi and the overshoot at x~+~, or the overshoot at xi and the 
undershoot at xi + e,, respectively. Thus, (AlO) may be further reduced to 

cf+ 1/2q = mid 1, P,l, Bi,.,) if A f, 1.;2e, > 0, (Alla) 

CL 1!2e, = min(L PI, P1, ,,) if A I+ ,.:2e, < 0, (Allb) 

where the equality sign selected in (Alla), (Allb) ensures maximal values of the 
C-coefficients allowed by the monotonicity constraints and consequently minimal 
adjustment of the A-fluxes in (12) and the maximal accuracy of the modified 
algorithm (14). Incorporating (Alla), (Allb) in (12) gives, finally, (15). 
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